If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.5x^2-14x-28=0
a = 3.5; b = -14; c = -28;
Δ = b2-4ac
Δ = -142-4·3.5·(-28)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14\sqrt{3}}{2*3.5}=\frac{14-14\sqrt{3}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14\sqrt{3}}{2*3.5}=\frac{14+14\sqrt{3}}{7} $
| 10d^2+26d+12=0 | | 750=-10.4x^2+132x+332 | | 1/200/1=x/2 | | (3h+4)-6(5+1.4h)=0 | | -7=r/3=-10 | | 60000=-1/2x^2-25x | | (w^2)+6w-27=0 | | 3x2+2x-8=540 | | -2x^2=-200 | | x=12-(.2(x+18)) | | 180=5x+(x+24) | | ((2x+3)/12)-((x-6)/8)-1=0 | | X2+13=4x | | 8^(n+1)=3 | | (5y-2)(8+y)=0 | | 8^n+1=3 | | 14x-6x²+16=0 | | 7x-15=8x-15 | | -2(a+5)-5(a+5)=0 | | 34=3(x+7)+5(1-x) | | 5x-10=4x+28 | | x=12-(2(x+18)) | | Y=-16x^2+270x+115 | | 2(7r-2)-6(3r+5)=-6 | | 4.5/x=5.5 | | 6(x+8)-8x=38 | | -45=2(2v-8)-3(7v+4) | | 7(2x-2)-6(4-x)=-18 | | 9m-4(2m-9)=15 | | -7(4a+4)+8a=112 | | 2(3x+2)+5=3(x+3)+3x | | g^2+5g-50=0 |